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Abstract The PoplMark challenge proposes a set of benchmarks intended to assess
the usability of proof assistants in the context of research on programming languages.
It is based on the metatheory of System F<:. We present a solution to the challenge
using de Bruijn indices, developed with the Coq proof assistant.
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1 Introduction

The PoplMark challenge [5] is a set of benchmarks designed to evaluate the state
of mechanization in the metatheory of programming languages. The challenge was
timely: proof assistants are becoming mature and there is a raising interest among
the programming language research community towards mechanized proofs.

In our experience [3, 27, 28], we are still at a stage where writing a full polished
mechanized proof for a conference paper remains a huge undertaking and is usually
not worthwhile. Still, we have found it very useful to have mechanized proofs of key
results. Of course, it gives high confidence on the results. But, above all, it forces
to think about every details: there can be no fuzzy definitions, no proofs by hand
waving. As a consequence, one gets a much better understanding of what makes
the proofs go through. Without the help of a proof assistant, we believe the papers
mentioned above would have been very different, if written at all.

Mechanized proofs have other advantages compared to usual paper proofs.
Writing paper proofs requires a lot of attention. As the formalization evolves, a lot
of work is required to update the proofs properly and then convince oneself that
they remain correct. Some obvious lemma whose proof was only sketched may well
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become wrong. We find this work tedious and stressful. On the other hand, with a
mechanized proof, the proof assistant indicates directly which parts of the proof have
to be adjusted. And once the whole proof goes through, we know it is correct. As
an illustration, we can consider the paper proofs in the PoplMark challenge paper.
These proofs are of a much higher standard than what is usually done. They are well-
written and very detailed. We find it significant that, despite this, the proof sketch of
one of the lemmas is incorrect (see Section 4.8), and a significant lemma is missing1

(see Section 5.2).
We present a solution to the PoplMark challenge based on de Bruijn indices. The

PoplMark team was critical of this technique:

The technology should impose reasonable overheads. [...] our experience is
that explicit de Bruijn-indexed representations of variable binding structure fail
this test. [...] In our experience, [...] de Bruijn representations have two major
f laws. First, the statements of theorems require complicated clauses involving
“shifted” terms and contexts. These extra clauses make it dif f icult to see the
correspondence between informal and formal versions of the same theorem–
there is no question of simply typesetting the formal statement and pasting it into
a paper. Second, while the notational clutter is manageable for “toy” examples of
the size of the simply-typed lambda calculus, we have found it becomes quite a
heavy burden even for fairly small languages like F<:.

We hope the present paper, and the corresponding proof development, will convince
the reader that de Bruijn indices actually incurs reasonable overheads, at least with
the help of a proof assistant (we would not use them for paper proofs!).

Our solution [26] to the PoplMark challenge is written in Coq [23]. The challenge
is composed of three parts. The solution addresses challenges 1 (transitivity of
F<: subtyping) and 2 (type safety of F<:). Each of these challenges are divided in two
parts, starting with properties of pure F<: and then asking that the same properties
be proved for F<: enriched with records and pattern matching. Our solution to
the first part of these challenges is about 1,300 lines,2 omitting empty lines and
comments). This appears to be fairly competitive, given that we have made no
attempt at minimizing the size of our solution. In particular, we make little use of
automation. All lemmas are explicitly applied: the proofs do not take advantage of
the hint database mechanism provided by Coq. This makes the proofs longer, but
probably more readable as the dependencies between the different lemmas can be
explicitly read from the proof script.

We have tried to follow as closely as possible the paper proofs provided in the
challenge paper. We refer to these proofs when describing our proof development.
In this paper, we provide the Coq definitions and lemma statements. Proof details,
as well as a few lemmas of little importance, are omitted. We start by providing
an explanation of de Bruijn indices (Section 2). Then, we present our solution to
challenges 1A (Section 3) and 2A (Section 4) and sketch the solution to challenges 1B

1For solution 2B, the proof of lemma A.15 (Progress) relies on the fact that a well-typed pattern can
always match a well-typed value of the same type (that is, rule E-LetV can be applied). This is not
obvious, but this issue is not even mentioned.
2The solution to challenges 1B and 2B is about 2,200 lines.
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and 2B (Section 5). Finally, we rapidly present how challenge 3 could be addressed
(Section 6).

2 De Bruijn Indices

2.1 Syntax

De Bruijn indices [11] is a notation for representing terms with binders up to α-
equivalence. The key idea is that variable occurrences in a term are not represented
by a name, but by an index, which is a natural number. This index counts the number
of binders between this occurrence of the variable and the corresponding binder.

We illustrate de Bruijn indices using the types of System F<:. The standard syntax
is the following.

T ::= types
X type variable
Top maximum type
T → T type of functions
∀X<:T.T universal type

A universal type ∀X<:T1.T2 contains a binder for variable X in type T2. In the
corresponding de Bruijn syntax, type variables X are replaced by indices N and bound
variables are implicit:

T ::= de Bruijn types
N type index
Top
T → T
∀<:T.T

For instance, the type:

∀X<:Top.X → ∀Y<:X.Y → X

is represented using the following syntax:

∀<:Top.0 → ∀<:0.0 → 1 .

Clearly, de Bruijn notation is hard to read, as a same number can stand for different
variables, and conversely. For the sake of clarity, it is worthwhile to draw arrows
from indices to the corresponding binder.

∀<:Top.0 → ∀<:0.0 → 1

2.2 Shifting and Substitution

What makes de Bruijn indices practical is that, usually, few terms are explicitly
written in proofs. One rather manipulates abstract types (written with just a letter T)
or type schemes (written, for instance, ∀<:T1.T2). It is then more fruitful to consider
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a dual point of view, focusing on contexts rather than on index occurrences in terms.
For instance, let us consider the term below.

∀<:T1.T2

0123

012

We have represented the outer context below the type. This is also the context of type
T1. The context of type T2 is above. When a type T is moved from the global context
into type T2 (typically, by substitution), all its indices have to be shifted by 1 in order
to make room for the additional bound variable. We write ↑0 T for the result of this
shift operation. This operation is also called lift or bump [22]. One must actually be
able to make room at any index N, hence the more general shifting operator ↑N.

As a more concrete example, given a type T, in order to build a type ∀X<:Top.T
(where variable X does not occur in T), one need to make room for variable X at rank
0 in T. Hence the representation ∀<:Top. ↑0 T.

Substitution has a dual effect on the context. In a substitution [N �→ P]T, the type
T is in a context with an additional variable N. Type P is in the global context. These
two contexts are illustrated below.

[1 �→ P]T
0 123

012

After substitution, variable N has been replaced by type P in type T and the variables
I > N occurring in T has been decremented by 1 to fill the gap. This corresponds to
moving from the upper context to the lower context in the figure above.

The shifting and substitution operators are defined recursively in Fig. 1. Note that
when a binder is crossed (universal type), the cut-off index is increased by one.

Fig. 1 Shifting and substitution
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Fig. 2 Interaction rules

Similarly, when a type P crosses a binder, its indices are shifted. This use of the
shifting operator is an instance of a general rule that we follow:

Whenever a type (or a term) crosses a binder, its indices must be shifted to f it the
new context.

We have found that using this rule consistently is very effective at keeping the
de Bruijn notation manageable.

2.3 Interaction Rules Between Shifting and Substitution

A last crucial ingredient for dealing effectively with de Bruijn indices is a charac-
terization of how shifting and substitution interact. The five rules of interest are
given in Fig. 2. They cover all possible interactions between the two operators. In
practice, it is always clear when to apply these rules: when stuck with two operators
applied to the same term, apply the corresponding rule. We believe it is important
to explain these rules. For this, we illustrate graphically the effect of the shift and
substitution operators on the context by diagrams as in Fig. 3. The upper lines stand
for the contexts before the operation is performed while the lower lines stands for
the resulting contexts. The black rectangle is the variable added or removed.

The first rule is illustrated in Fig. 4. Inserting a variable at index N and then
replacing it by a type P is the same as leaving the term unchanged.

The second rule is illustrated in Fig. 5. On the left hand side, two variables are
inserted, first at index N+ I, then at index N. The second insertion shifts the first
variable to index N+ I+ 1. This is the same as inserting variables first at index N,
then at index N+ I+ 1 (right hand side of the equation).

In the third rule, the term [N+ I �→ P]T is shifted at index N (left hand side of
the equality). This can also be performed as follows. As the context of term P is the
outer context, is should be shifted at the same index N. Term T is in a context with a
variable added at index N+ I. This is greater or equal to N, thus term T is also shifted
at index N. On the other hand, index N+ I becomes index N+ I+ 1 after shifting.

Fig. 3 Effect of shifting (left) and substitution (right) on the context
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Fig. 4 Illustration of the
equality T = [N �→ P] ↑N T

So, finally, type ↑N P is substituted for index N+ I+ 1 in type ↑N T (right hand side
of the equality).

In the fourth rule, the term [N �→ P]T is shifted at index N+ I. This can also
be performed as follows. As the context of term P is the outer context, is should
be shifted at the same index N+ I. Term T is in a context with a variable added
at index N. It should be shifted at index N+ I+ 1 which corresponds to index
N+ I in the outer context. Index N is not affected by the shifting, as it is smaller
than N+ I+ 1. So, finally, type ↑N+I P is substituted for index N in type ↑N+I+1 T.

In the last rule, type Q is substituted at index N+ I in [N �→ P]T. This can also
be performed as follows. The substitution is applied to term P which is in the outer
context. Then, the substitution has to be adjusted before being applied to type T:
index N+ I in the outer contexts becomes index N+ I+ 1 in the context of type T;
type Q becomes type ↑N Q. Hence the right hand side of the equation.

2.4 An Alternative Definition of Substitution

The definition of substitution we have given is standard [18, 21, 22]. It turns out there
is an alternative way to define substitution, also widely used [6, 9, 14]. In fact, both
definitions appear in the seminal paper [11]. The idea is to defer the application of
the shifting operator ↑I: rather than applying it each time a binder is crossed, an
iterated version ↑I

J of the shifting operator is applied once at each occurrence of the
variable substituted for (the natural number J is the number of shiftings to perform).
This is more efficient when the number of occurrences of the variable is less than the
number of binders in the term. We write {N �→ P}T for this other substitution, whose
definition is given in Fig. 6. The two definitions of substitutions are related as follows:

{N �→ P}T = [N �→↑0
N P]T

Fig. 5 Illustration of the equality ↑N↑N+I T =↑N+I+1↑N T
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Fig. 6 Alternative definition of substitution

The two definitions coincide when N is 0.
Rasmussen notes that the definition of substitution we have adopted is sig-

nificantly easier to use [21]. Indeed, it relies on a simpler shifting operator, with
a single parameter. We also find it more intuitive, as the substituted type is in the
current context, rather than in a possibly deeper context. Finally, the counterparts to
the interaction rules of Fig. 2 for the alternative definition of substitution are more
complicated and harder to understand [10].

3 Challenge 1A: Transitivity of F<: Subtyping

This challenge consists in proving the transitivity of the subtyping relation of System
F<: starting from an algorithmic specification of the relation.

3.1 Syntax

The definition of types follows closely the grammar in Section 2. We define an induc-
tive type typ with four constructors, one for each type construct. The constructor tvar,
corresponding to indices, takes a natural number and returns a type. The constructor
top is a type. The constructors arrow and all both take two types and return
a type.

Inductive typ : Set :=
| tvar : nat → typ
| top : typ
| arrow : typ → typ → typ
| all : typ → typ → typ.
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3.2 Shifting and Substitution

Shifting and substitution are specified as functions defined by recursion on types.
This is basically the same definition as in Section 2. The type ↑T N is written tshift N T.
The type [N �→ P]T is written tsubst T N P.

Fixpoint tshift (I : nat) (T : typ) : typ :=
match T with
| tvar N ⇒ tvar (if less or equal I N then 1 + N else N)
| top ⇒ top
| arrow T1 T2 ⇒ arrow (tshift I T1) (tshift I T2)
| all T1 T2 ⇒ all (tshift I T1) (tshift (1 + I) T2)
end.

Fixpoint tsubst (T : typ) (I : nat) (P : typ) : typ :=
match T with
| tvar N ⇒

match compare nat N I with
| Nat less ⇒ tvar N
| Nat equal ⇒ P
| Nat greater ⇒ tvar (N - 1)
end

| top ⇒ top
| arrow T1 T2 ⇒ arrow (tsubst T1 I P) (tsubst T2 I P)
| all T1 T2 ⇒ all (tsubst T1 I P) (tsubst T2 (1 + I) (tshift 0 P))
end.

We prove the five interaction rules between shifting and substitution of Fig. 2.

Lemma tsubst tshift prop :
∀ (N : nat) (T P : typ), T = tsubst (tshift N T) N P.

Lemma tshift tshift prop :
∀ (N I : nat) (T : typ),
tshift N (tshift (N + I) T) = tshift (1 + N + I) (tshift N T).

Lemma tshift tsubst prop 1 :
∀ (N I : nat) (T P : typ),
tshift N (tsubst T (N + I) P) =
tsubst (tshift N T) (1 + N + I) (tshift N P).

Lemma tshift tsubst prop 2 :
∀ (N I : nat) (T P : typ),
tshift (N + I) (tsubst T N P) =
tsubst (tshift (1 + N + I) T) N (tshift (N + I) P).

Lemma tsubst tsubst prop :
∀ (N I : nat) (T P Q : typ),
tsubst (tsubst T N P) (N + I) Q =
tsubst (tsubst T (1 + N + I) (tshift N Q)) N (tsubst P (N + I) Q).
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3.3 Environments

An environment is a sequence of bindings. We include term variable bindings even
though they are not used for this challenge problem. They will be needed for
challenge 2A (Section 4).

E ::= type environments
∅ empty type environment
E,x : T term variable binding
E,X<:T type variable binding

Environments are defined inductively. There are three constructors: empty for the
empty environment, evar for term variable bindings and etvar for type variable
bindings.

Inductive env : Set :=
| empty : env
| evar : env → typ → env
| etvar : env → typ → env.

Following the de Bruijn notation, variable names are omitted in environment
bindings. Basically, a variable index is its depth in the environment. To be more
precise, we use different namespaces for type variables and term variables. Thus, the
type variable with index N is the N-th type variable bound in the environment, term
variables being skipped. Indeed, using different namespaces makes the definition of
substitutions much clearer: substituting a term has no effect on types, and we never
have to deal with the case where a term variable is the same as the type variable
substituted for.

We define two functions get tvar and get var for accessing the environment, both
of type

env → nat → option typ.

The first function retrieves the bound associated to a type variable while the second
one returns the type of a term variable. They both return None when the variable is
unbound.

Function get tvar is defined by induction on environments. If the end of an
environment is reached, the value None is returned as the variable is not bound
(case empty). Term variable bindings are skipped (case evar). If the correct index
is reached (that is, X = 0), the function returns its bound. Otherwise, the index X
is the successor of some natural number X’ (which is written X = S X’), and the
function is called recursively on X’. The type returned is shifted each time a type
variable binding is crossed (the opt map function applied to some function f maps
None to None and Some v to Some (f v)).

Fixpoint get tvar (E : env) (X : nat) : option typ :=
match E with
| empty ⇒ None
| evar E’ ⇒ get tvar E’ X
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| etvar E’ T ⇒
opt map (tshift 0)

(match X with
| 0 ⇒ Some T
| S X’ ⇒ get tvar E’ X’
end)

end.

The function get var is defined similarly.

Fixpoint get var (E : env) (x : nat) : option typ :=
match E with
| empty ⇒ None
| evar E’ T ⇒

match x with
| 0 ⇒ Some T
| S x’ ⇒ get var E’ x’
end

| etvar E’ ⇒ opt map (tshift 0) (get var E’ x)
end.

A flat environment, where all types lie in the same context, may seem simpler at
first sight than our choice of a nested environment. But many operations would
be more complicated. For instance, when extending a flat environment with a new
variable, all types in the environment have to be shifted. Well-formedness conditions
(Section 3.4) are also much simpler to state with nested environments.

3.4 Well-Formedness Conditions

The challenge problem states that types and environments should be well-scoped.
Enforcing this condition represents a significant part of our proofs (which is com-
pletely left out of the paper proofs). It is tempting to do without these conditions.
The proofs may well go through. However, one would then be considering a different
calculus.

The well-formedness conditions are as follows. In an environment E,X<:T, the
type variable X must not be in the domain of environment E and the type T must
be well-formed, that is, the free variables of type T must all be in the domain of
environment E. The first condition is ensured by our definition of the environment.
The second will have to be stated explicitly.

We write the type well-formedness predicate wf typ E T as a recursive function.
The interesting cases are the case of indices tvar, where we check the variable is
bound in the current environment E, and the case of universal types all, where the
inner type T2 is checked in an extended environment.

Fixpoint wf typ (E : env) (T : typ) : Prop :=
match T with
| tvar X ⇒ get tvar E X �= None
| top ⇒ True
| arrow T1 T2 ⇒ wf typ E T1 ∧ wf typ E T2
| all T1 T2 ⇒ wf typ E T1 ∧ wf typ (etvar E T1) T2
end.
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The predicate could also have been defined using inductive rules. But, in practice,
we never reason by induction on the predicate. Using a fixpoint definition, one can
take advantage of the computational power of Coq. Assumptions wf typ E T typically
occur in proof hypotheses for some known types T. For instance, suppose we know
that T is of the shape arrow T1 T2. Then, with the definition above, the assumption
is directly equivalent (by reduction) to wf typ E T1 ∧ wf typ E T2. With an inductive
definition, the use of an inversion tactic would be required instead.3

The environment well-formedness condition is straightforward to state. We use a
recursive function as well.

Fixpoint wf env (E : env) : Prop :=
match E with
| empty ⇒ True
| evar E T ⇒ wf typ E T ∧ wf env E
| etvar E T ⇒ wf typ E T ∧ wf env E
end.

We prove that type well-formedness is preserved when the environment is weakened
(more precisely, when more type variables are bound). These two lemma are useful
for proving environment weakening and strengthening lemmas below.

Lemma wf typ env weaken :
∀ (T : typ) (E E’ : env),
(∀ (X : nat), get tvar E’ X = None → get tvar E X = None) →
wf typ E T → wf typ E’ T.

Lemma wf typ extensionality :
∀ (T : typ) (E E’ : env),
(∀ (X : nat), get tvar E X = get tvar E’ X) →
wf typ E T → wf typ E’ T.

3.5 Subtyping Relation

The specification of the subtyping relation matches closely the challenge problem.
We only insert some well-formedness assertions in rules SA Top and SA Ref l TVar.

Inductive sub : env → typ → typ → Prop :=
| SA Top :

∀ (E : env) (S : typ), wf env E → wf typ E S → sub E S top
| SA Ref l TVar :

∀ (E : env) (X : nat),
wf env E → wf typ E (tvar X) → sub E (tvar X) (tvar X)

| SA Trans TVar :
∀ (E : env) (X : nat) (T U : typ),
get tvar E X = Some U → sub E U T → sub E (tvar X) T

3Another possibility could be to reason by induction on the well-formedness hypothesis when one
would reason by induction on terms in the paper proof. We have not investigated this.
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| SA Arrow :
∀ (E : env) (T1 T2 S1 S2 : typ),
sub E T1 S1 → sub E S2 T2 → sub E (arrow S1 S2) (arrow T1 T2)

| SA All :
∀ (E : env) (T1 T2 S1 S2 : typ),
sub E T1 S1 → sub (etvar E T1) S2 T2 →
sub E (all S1 S2) (all T1 T2).

The well-formedness conditions are inserted in this definition so as to ensure that all
environments and types in subtyping relation are well-formed.

Lemma sub wf :
∀ (E : env) (T U : typ),
sub E T U → wf env E ∧ wf typ E T ∧ wf typ E U.

Thanks to this lemma, most well-formedness hypotheses can be omitted in lemma
statements. Note that as few well-formedness conditions as possible were inserted in
the definition of subtyping, so as to reduce the number of times a well-formedness
condition has to be proven when building a subtyping derivation.

3.6 Reflexivity of Subtyping

This is Lemma A.1 in the paper proofs. The proof mirrors the paper proof. We
believe it is useful to show at least once what a Coq proof looks like. The proof is
performed by using tactics. It is hardly readable. Still, there is some structure. The
proof starts by swapping the two quantifiers E and T. It is by induction on type T. In
all cases, the environment E and two hypotheses H1 (environment well-formedness)
and H2 (type well-formedness) are moved to the hypotheses. Then, each case is
resolved by using one of the subtyping rules. In cases the type is of shape arrow T1
T2 or all T1 T2, the induction hypotheses IHT1 and IHT2 are applied to conclude.
As one can see, the structure of the proof is apparent here. This is not however the
style of proof which is encouraged by existing tools, which rather force a linear and
unstructured style.

Lemma sub ref lexivity :
∀ (E : env) (T : typ), wf env E → wf typ E T → sub E T T.

intros E T; generalize E; clear E; induction T; intros E H1 H2;
[ apply SA Ref l TVar; trivial
| apply SA Top; trivial
| apply SA Arrow;

[ exact (IHT1 H1 (proj1 H2))
| exact (IHT2 H1 (proj2 H2)) ]

| apply SA All;
[ exact (IHT1 H1 (proj1 H2))
| apply IHT2 with (2 := (proj2 H2));

simpl; simpl in H2; tauto ] ].
Qed.
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3.7 Permutation and Weakening

This section corresponds in the paper proofs to Lemma A.2 (Permutation and
Weakening). As we have term variables in the environment, we also need to prove
part of Lemma A.5 (Weakening for Subtyping and Typing) now. The paper proofs
suggest to show the two following properties. First, subtyping is preserved by any
environment permutation that preserves well-formedness. Second, inserting multiple
bindings to the right of an environment preserves subtyping.

It does not appear cost-effective to specify environment permutation and simul-
taneous insertion of multiple bindings. Instead, we have chosen to prove a one-step
weakening lemma, where a variable is inserted anywhere in the environment. This is
strong enough for the remainder of the proofs.

3.7.1 Inserting a Type Variable Binding in an Environment

In order to state the weakening lemma, we first specify what it means to insert a type
variable binding in an environment. The proposition insert tvar N E1 E2 asserts that
environment E2 can be built from environment E1 by inserting a single binding at
index N, that is, environment E1 is of shape E,E′ while environment E2 is of shape
E,X<:T,E′ where variable X corresponds to index N. Note that all type variables in
environment E′ are shifted when the binder is inserted (rules ib var and ib tvar).

Inductive insert tvar : nat → env → env → Prop :=
| ib here :

∀ (T : typ) (E : env), wf typ E T → insert tvar 0 E (etvar E T)
| ib var :

∀ (X : nat) (T : typ) (E E’ : env),
insert tvar X E E’ →
insert tvar X (evar E T) (evar E’ (tshift X T))

| ib tvar :
∀ (X : nat) (T : typ) (E E’ : env),
insert tvar X E E’ →
insert tvar (1 + X) (etvar E T) (etvar E’ (tshift X T)).

We now present the properties of the insert tvar relation with respect to get var and
get tvar. Basically, when insert tvar X′ E E′ holds, environment E′ is environment E
with a type variable binding added at index X′ and all types shifted accordingly.

Lemma get tvar insert tvar ge :
∀ (X X’ : nat) (E E’ : env),
insert tvar X’ E E’ → X’ ≤ X →
get tvar E’ (1 + X) = opt map (tshift X’) (get tvar E X).

Lemma get tvar insert tvar lt :
∀ (X X’ : nat) (E E’ : env),
insert tvar X’ E E’ → X < X’ →
get tvar E’ X = opt map (tshift X’) (get tvar E X).

Lemma get var insert tvar :
∀ (x X’ : nat) (E E’ : env),
insert tvar X’ E E’ →
get var E’ x = opt map (tshift X’) (get var E x).



340 J. Vouillon

Finally, we state the properties of type variable binding insertion with respect to
well-formedness.

Lemma insert tvar wf typ :
∀ (T : typ) (X : nat) (E E’ : env),
insert tvar X E E’ → wf typ E T → wf typ E’ (tshift X T).

Lemma insert tvar wf env :
∀ (X : nat) (E E’ : env), insert tvar X E E’ → wf env E → wf env E’.

The same proof pattern is used whenever specifying a relation between environ-
ments: first the relation is defined, then we prove its properties with respect to
environment access functions, and finally we prove its properties on well-formedness.

3.7.2 Actual Proofs

We can now state and prove the weakening lemma. The occurrence of a shifting
operator in the lemma statement reflects the fact that a type variable binding is
inserted at depth X in the environment.

Lemma sub weakening tvar ind :
∀ (E E’ : env) (X : nat) (U V : typ),
insert tvar X E E’ → sub E U V → sub E’ (tshift X U) (tshift X V).

This is the instance of the lemma where X is index 0.

Lemma sub weakening tvar :
∀ (E : env) (T U V : typ),
wf typ E V → sub E T U → sub (etvar E V) (tshift 0 T) (tshift 0 U).

We now prove a weakening lemma for term variable bindings. Rather than proving
the property by induction on a derivation (as in the paper proofs), we rely on a more
general result: the subtyping relation does not depend on term variable bindings.
This intermediate result is also used to prove strengthening (Section 4.6.4).

Lemma sub extensionality :
∀ (E E’ : env) (U V : typ),
(∀ (X : nat), get tvar E X = get tvar E’ X) →
wf env E’ → sub E U V → sub E’ U V.

Lemma sub weakening var :
∀ (E : env) (T U V : typ),
wf typ E V → sub E T U → sub (evar E V) T U.

3.8 Transitivity and Narrowing

Transitivity and narrowing (Lemma A.3) must be proved simultaneously. The proof
is by induction on the size of terms, defined below. In order to state the narrowing
lemma, we also specify what it means for an environment E′ to be a narrow of an
environment E.
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3.8.1 Size of Types

The size of a type T is defined as follows, by structural recursion.

Fixpoint size (T : typ) : nat :=
match T with
| tvar ⇒ 0
| top ⇒ 0
| arrow T1 T2 ⇒ 1 + size T1 + size T2
| all T1 T2 ⇒ 1 + size T1 + size T2
end.

A simple induction shows that shifting preserves the size of types.

Lemma shift preserves size : ∀ (T : typ) (X : nat), size (tshift X T) = size T.

3.8.2 Narrowing Relation

The environments E1 = E,X<:Q,E′ and E2 = E,X<:P,E′ are in a narrowing relation
(written narrow N E1 E2) if E � P<:Q.

Inductive narrow : nat → env → env → Prop :=
| narrow 0 :

∀ (E : env) (T T’ : typ),
sub E T’ T → narrow 0 (etvar E T) (etvar E T’)

| narrow extend var :
∀ (E E’ : env) (T : typ) (X : nat),
wf typ E’ T → narrow X E E’ → narrow X (evar E T) (evar E’ T)

| narrow extend tvar :
∀ (E E’ : env) (T : typ) (X : nat),
wf typ E’ T → narrow X E E’ →
narrow (1 + X) (etvar E T) (etvar E’ T).

The environments satisfy the following properties. They are identical for all variables
distinct from variable X.

Lemma get tvar narrow ne :
∀ (X X’ : nat) (E E’ : env),
narrow X E E’ → X’ �= X → get tvar E X’ = get tvar E’ X’.

Lemma get var narrow :
∀ (X x’ : nat) (E E’ : env),
narrow X E E’ → get var E x’ = get var E’ x’.

The two bounds T and T’ of variable X are in subtyping relation.

Lemma get tvar narrow eq :
∀ (X : nat) (E E’ : env),
narrow X E E’ →
∃ T, ∃ T’,
get tvar E X = Some T ∧ get tvar E’ X = Some T’ ∧ sub E’ T’ T.
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Finally, narrowing preserves well-formedness.

Lemma narrow wf typ :
∀ (E E’ : env) (T : typ) (X : nat),
narrow X E E’ → wf typ E T → wf typ E’ T.

Lemma narrow wf env :
∀ (E E’ : env) (X : nat), narrow X E E’ → wf env E → wf env E’.

3.8.3 Actual Proof

We first state the properties of transitivity and narrowing. These statements are used
to formulate in a succinct way intermediate lemmas.

Definition transitivity prop (Q : typ) :=
∀ (E : env) (S T : typ), sub E S Q → sub E Q T → sub E S T.

Definition narrowing prop (Q : typ) :=
∀ (E E’ : env) (X : nat) (S T : typ),
narrow X E E’ → get tvar E X = Some Q →
sub E S T → sub E’ S T.

The proof follows closely the paper proofs. However, we cannot perform a proof
on the distinguished type Q as the induction in the paper proof is on Q up to
alpha conversion (shifting). Instead, we perform a proof by induction on the size
of types. Note that it is actually not that clear what a proof by induction on Q
defined up to alpha-conversion means. The extensive literature on nominal reasoning
techniques [20, 24] shows that this is indeed far from obvious. If one is not careful,
this kind of reasoning by induction up to α-conversion can actually be used to prove
false [25]!

First, we give the crucial step in the proof of transitivity, showing that transitivity
holds if we assume that both transitivity and narrowing hold for smaller cut types Q’.

Lemma transitivity case :
∀ Q : typ,
(∀ Q’ : typ,

size Q’ < size Q → transitivity prop Q’ ∧ narrowing prop Q’) →
transitivity prop Q.

Next we give the crucial step in the proof of narrowing, showing that narrowing for
Q holds if we assume transitivity for types of the same size as Q. This cannot be for
Q itself as in the paper proof, as the hypothesis is applied not just to type Q, but also
to type tshift 0 Q.

Lemma narrowing case :
∀ Q : typ,
(∀ Q’ : typ, size Q’ = size Q → transitivity prop Q’) →
narrowing prop Q.

Finally, we combine the above lemmas into the full proof of transitivity and narrow-
ing, by induction on the size of Q.

Lemma transitivity and narrowing :
∀ Q : typ, transitivity prop Q ∧ narrowing prop Q.
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Lemma sub transitivity :
∀ (E : env) (T U V : typ), sub E T U → sub E U V → sub E T V.

Lemma sub narrowing :
∀ (E E’ : env) (X : nat) (S T : typ),
narrow X E E’ → sub E S T → sub E’ S T.

4 Challenge 2A: Type Safety of F<:

This challenge consists in proving the type safety of System F<:, that is, the usual
progress and preservation lemmas.

4.1 Syntax

The syntax of F<: terms is the following.

t ::= term
x variable
λx:T.t abstraction
tt application
λX<:X.t type abstraction
t[T] type application

With de Bruijn notation, variables are replaced by an index (constructor var).
Binder names are implicit: variable names are omitted from abstraction abs and type
abstraction tabs.

Inductive term : Set :=
| var : nat → term
| abs : typ → term → term
| app : term → term → term
| tabs : typ → term → term
| tapp : term → typ → term.

As explained in Section 3.3, type and term variables belong to different namespaces:
type variable tvar 0 and term variable var 0 refer to distinct binders.

4.2 Shiftings and Substitutions

We define two additional shifting operators, for shifting term indices and type indices
in terms, and two substitutions operators, for substituting terms and types in terms.

Fixpoint shift (x : nat) (t : term) : term :=
match t with
| var y ⇒ var (if less or equal x y then 1 + y else y)
| abs T1 t2 ⇒ abs T1 (shift (1 + x) t2)
| app t1 t2 ⇒ app (shift x t1) (shift x t2)
| tabs T1 t2 ⇒ tabs T1 (shift x t2)
| tapp t1 T2 ⇒ tapp (shift x t1) T2
end.



344 J. Vouillon

Fixpoint shift typ (X : nat) (t : term) : term :=
match t with
| var y ⇒ var y
| abs T1 t2 ⇒ abs (tshift X T1) (shift typ X t2)
| app t1 t2 ⇒ app (shift typ X t1) (shift typ X t2)
| tabs T1 t2 ⇒ tabs (tshift X T1) (shift typ (1 + X) t2)
| tapp t1 T2 ⇒ tapp (shift typ X t1) (tshift X T2)
end.

Fixpoint subst (t : term) (x : nat) (t’ : term) : term :=
match t with
| var y ⇒

match compare nat y x with
| Nat less ⇒ var y
| Nat equal ⇒ t’
| Nat greater ⇒ var (y - 1)
end

| abs T1 t2 ⇒ abs T1 (subst t2 (1 + x) (shift 0 t’))
| app t1 t2 ⇒ app (subst t1 x t’) (subst t2 x t’)
| tabs T1 t2 ⇒ tabs T1 (subst t2 x (shift typ 0 t’))
| tapp t1 T2 ⇒ tapp (subst t1 x t’) T2
end.

Fixpoint subst typ (t : term) (X : nat) (T : typ) : term :=
match t with
| var y ⇒ var y
| abs T1 t2 ⇒ abs (tsubst T1 X T) (subst typ t2 X T)
| app e1 e2 ⇒ app (subst typ e1 X T) (subst typ e2 X T)
| tabs T1 e1 ⇒ tabs (tsubst T1 X T) (subst typ e1 (1 + X) (tshift 0 T))
| tapp e1 T2 ⇒ tapp (subst typ e1 X T) (tsubst T2 X T)
end.

We do not prove any interaction rules involving these substitution and shifting
operators, as we did for types (Section 3.2). Indeed, this is not needed for the proofs.

4.3 Well-Formedness

The predicate wf term E t asserts that all the variables in term t are bound in
environment E.

Fixpoint wf term (E : env) (t : term) : Prop :=
match t with
| var x ⇒ get var E x �= None
| abs T1 t2 ⇒ wf typ E T1 ∧ wf term (evar E T1) t2
| app t1 t2 ⇒ wf term E t1 ∧ wf term E t2
| tabs T1 t2 ⇒ wf typ E T1 ∧ wf term (etvar E T1) t2
| tapp t1 T2 ⇒ wf term E t1 ∧ wf typ E T2
end.
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4.4 Typing Relation

The typing relation is as defined in the challenge problem. We have only added a
single well-formedness condition in rule T Var.

Inductive typing : env → term → typ → Prop :=
| T Var :

∀ (E : env) (x : nat) (T : typ),
wf env E → get var E x = Some T → typing E (var x) T

| T Abs :
∀ (E : env) (t : term) (T1 T2 : typ),
typing (evar E T1) t T2 → typing E (abs T1 t) (arrow T1 T2)

| T App :
∀ (E : env) (t1 t2 : term) (T11 T12 : typ),
typing E t1 (arrow T11 T12) →
typing E t2 T11 → typing E (app t1 t2) T12

| T Tabs :
∀ (E : env) (t : term) (T1 T2 : typ),
typing (etvar E T1) t T2 → typing E (tabs T1 t) (all T1 T2)

| T Tapp :
∀ (E : env) (t1 : term) (T11 T12 T2 : typ),
typing E t1 (all T11 T12) → sub E T2 T11 →
typing E (tapp t1 T2) (tsubst T12 0 T2)

| T Sub :
∀ (E : env) (t : term) (T1 T2 : typ),
typing E t T1 → sub E T1 T2 → typing E t T2.

We prove that assertion typing E t T implies the well-formedness assertions
wf env E, wf term t and wf typ T in Section 4.6.3.

4.5 Reduction Rules

Values are abstractions and type abstractions.

Definition value (t : term) :=
match t with
| abs ⇒ True
| tabs ⇒ True
| ⇒ False
end.

We define the syntax of contexts, as in the challenge problem.

Inductive ctx : Set :=
| c hole : ctx
| c appfun : ctx → term → ctx
| c apparg : ∀ (t : term), value t → ctx → ctx
| c typefun : ctx → typ → ctx.
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We specify what it means to insert a term t in a context c.

Fixpoint ctx app (c : ctx) (t : term) : term :=
match c with
| c hole ⇒ t
| c appfun c’ t’ ⇒ app (ctx app c’ t) t’
| c apparg t’ c’ ⇒ app t’ (ctx app c’ t)
| c typefun c’ T ⇒ tapp (ctx app c’ t) T
end.

These are the three evaluation rules.

Inductive red : term → term → Prop :=
| E AppAbs :

∀ (t11 : typ) (t12 t2 : term),
value t2 → red (app (abs t11 t12) t2) (subst t12 0 t2)

| E TappTabs :
∀ (t11 t2 : typ) (t12 : term),
red (tapp (tabs t11 t12) t2) (subst typ t12 0 t2)

| E Ctx :
∀ (c : ctx) (t1 t1’ : term),
red t1 t1’ → red (ctx app c t1) (ctx app c t1’).

4.6 Some Properties of Typing and Subtyping

We first prove some useful properties of the typing and subtyping relations. In order
to state these properties, we define two relations on environments, corresponding
respectively to term variable and type variable substitution.

4.6.1 Removal of a Term Variable Binding

We define the operation of removing a term variable binding from the environment:

E,x : T,E′ x�−→ E,E′.

This is what is needed for showing type preservation when substituting a term. As
this is a functional relation, we have chosen to specify it using a recursive function
rather than an inductive definition.

Fixpoint remove var (E : env) (x : nat) : env :=
match E with
| empty ⇒ empty
| etvar E’ T ⇒ etvar (remove var E’ x) T
| evar E’ T ⇒

match x with
| 0 ⇒ E’
| S x ⇒ evar (remove var E’ x) T
end

end.
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Here are the properties of the function with respect to functions get var and get tvar.

Lemma get var remove var lt :
∀ (E : env) (x x’ : nat),
x < x’ → get var (remove var E x’) x = get var E x.

Lemma get var remove var ge :
∀ (E : env) (x x’ : nat),
x ≥ x’ → get var (remove var E x’) x = get var E (1 + x).

Lemma get tvar remove var :
∀ (E : env) (X x’: nat),
get tvar E X = get tvar (remove var E x’) X.

As previously, we also prove three lemmas regarding well-formedness: inserting or
removing a binding preserves type well-formedness; removing a binding preserves
environment well-formedness.

4.6.2 Substitution of a Type for a Type Variable in an Environment

We define the operation of substituting a type T′ for some variable X in an
environment:

E,X<:T,E′ �→ E, [X �→ T′]E′,

where E � T′<:T (definition A.9 in the paper proofs). The relation
env subst X T′ E1 E2 holds when E1 and E2 are the two environments in relation
above, and the subtyping relation holds. To be precise, the type T′ in the env subst
relation is the type T′ in the subtyping relation above, but properly shifted to the
context corresponding to environment E2.

Inductive env subst : nat → typ → env → env → Prop :=
| es here :

∀ (E : env) (T T’ : typ),
sub E T’ T → env subst 0 T’ (etvar E T) E

| es var :
∀ (X : nat) (T T’ : typ) (E E’ : env),
env subst X T’ E E’ →
env subst X T’ (evar E T) (evar E’ (tsubst T X T’))

| es tvar :
∀ (X : nat) (T T’ : typ) (E E’ : env),
env subst X T’ E E’ →
env subst (1 + X) (tshift 0 T’) (etvar E T)

(etvar E’ (tsubst T X T’)).

Here are the properties of the relation with respect to functions get var and get tvar.
Basically, when env subst X′ T E E′ holds, the environment E′ is the environment E
where the type T has been substituted for the variable at index X′.

Lemma env subst get var :
∀ (x X’ : nat) (E E’ : env) (T : typ),
env subst X’ T E E’ →
get var E’ x = opt map (fun T’ ⇒ tsubst T’ X’ T) (get var E x).
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Lemma env subst get tvar lt :
∀ (X X’ : nat) (E E’ : env) (T : typ),
env subst X’ T E E’ → X < X’ →
get tvar E’ X = opt map (fun T’ ⇒ tsubst T’ X’ T) (get tvar E X).

Lemma env subst get tvar ge :
∀ (X X’ : nat) (E E’ : env) (T : typ),
env subst X’ T E E’ → X’ < X →
get tvar E’ (X - 1) =
opt map (fun T’ ⇒ tsubst T’ X’ T) (get tvar E X).

A crucial lemma we can now state is that well-formedness is preserved by
substitution.

Lemma env subst wf typ :
∀ (E E’ : env) (S T : typ) (X : nat),
env subst X T E E’ → wf typ E S → wf env E’ →
wf typ E’ (tsubst S X T).

4.6.3 Typing Relation Well-Formedness

We now show that the typing relation only relates well-formed environments, terms
and types. The proof is by induction on the typing derivation. For case T Tapp, we
rely on lemma env subst wf typ above.

Lemma typing wf :
∀ (E : env) (t : term) (U : typ),
typing E t U → wf env E ∧ wf term E t ∧ wf typ E U.

4.6.4 Permutation, Weakening, Strengthening and Narrowing

As with subtyping (Section 3.7), we do not prove a general permutation lemma such
as Lemma A.4 (Permutation for Typing) in the paper proofs. Rather, we prove
weakening and strengthening lemmas where variable insertion and removal may
occur anywhere in the environment.

First, we finish proving Lemma A.5 (Weakening for Subtyping and Typing).

Lemma typing weakening tvar :
∀ (E : env) (t : term) (U V : typ),
wf typ E V → typing E t U →
typing (etvar E V) (shift typ 0 t) (tshift 0 U).

Lemma typing weakening var :
∀ (E : env) (t : term) (U V : typ),
wf typ E V → typing E t U → typing (evar E V) (shift 0 t) U.

We prove Lemma A.6 (Strengthening).

Lemma sub strengthening var :
∀ (E : env) (x : nat) (U V : typ),
sub E U V → sub (remove var E x) U V.
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Finally, we prove Lemma A.7 (Narrowing for the Typing Relation), an analog for
the typing relation to the narrowing lemma for subtyping.

Lemma typing narrowing ind :
∀ (E E’ : env) (X : nat) (t : term) (U : typ),
narrow X E E’ → typing E t U → typing E’ t U.

Lemma typing narrowing :
∀ (E : env) (t : term) (U V1 V2 : typ),
typing (etvar E V1) t U → sub E V2 V1 → typing (etvar E V2) t U.

4.6.5 Substitution and Typing

We show that substitution and type substitution preserves typing. These are Lemma
A.8 (Substitution preserves typing), Lemma A.10 (Type substitution preserves sub-
typing) and Lemma A.11 (Type substitution preserves typing) in the paper proofs.

Compared to the lemma in the paper proofs, the first lemma is slightly stronger:
term q is typed in the final environment. This makes it possible to use our one-step
weakening lemmas rather that the stronger lemmas of the paper proofs.

Lemma subst preserves typing :
∀ (E : env) (x : nat) (t q : term) (T Q : typ),
typing E t T → get var E x = Some Q →
typing (remove var E x) q Q → typing (remove var E x) (subst t x q) T.

Lemma tsubst preserves subtyping :
∀ (E E’ : env) (X : nat) (T U V : typ),
env subst X T E E’ →
sub E U V → sub E’ (tsubst U X T) (tsubst V X T).

Lemma subst typ preserves typing ind :
∀ (E E’ : env) (t : term) (U P : typ) (X : nat),
env subst X P E E’ →
typing E t U → typing E’ (subst typ t X P) (tsubst U X P).

Lemma subst typ preserves typing :
∀ (E : env) (t : term) (U P Q : typ),
typing (etvar E Q) t U → sub E P Q →
typing E (subst typ t 0 P) (tsubst U 0 P).

4.6.6 Inversion Lemmas

We don’t prove Lemma A.12 (Inversion of subtyping) explicitly. We rely on Coq
inversion tactics instead. On the other hand, we prove inversion lemmas for the
typing relation (Lemma A.13), as Coq tactics are not sufficient in this case.

Lemma t abs inversion :
∀ (E : env) (t : term) (T0 T1 T2 T3 : typ),
typing E (abs T1 t) T0 → sub E T0 (arrow T2 T3) →
sub E T2 T1 ∧ (∃ T4, sub E T4 T3 ∧ typing (evar E T1) t T4).

Lemma t tabs inversion :
∀ (E : env) (t : term) (T0 T1 T2 T3 : typ),
typing E (tabs T1 t) T0 → sub E T0 (all T2 T3) →
sub E T2 T1 ∧
(∃ T4, sub (etvar E T2) T4 T3 ∧ typing (etvar E T2) t T4).
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4.7 Progress

We begin by describing the shape of closed values of arrow and quantifier types. This
is Lemma A.14 (Canonical Forms) in the paper proofs.

Lemma fun value :
∀ (t : term) (T1 T2 : typ),
value t → typing empty t (arrow T1 T2) → ∃ t’ , ∃ T1’ , t = abs T1’ t’.

Lemma typefun value :
∀ (t : term) (T1 T2 : typ),
value t → typing empty t (all T1 T2) → ∃ t’, ∃ T1’, t = tabs T1’ t’.

We then prove that any non-value can be decomposed into an evaluation context
and a subterm which can take a step (Lemma A.15).

Lemma local progress :
∀ (t : term) (U : typ),
typing empty t U →
value t ∨ ∃ c, ∃ t0, ∃ t0’, red t0 t0’ ∧ t = ctx app c t0.

The proof of Theorem A.16 (Progress) is then straightforward.

Theorem progress :
∀ (t : term) (U : typ), typing empty t U → value t ∨ ∃ t’, red t t’.

4.8 Preservation

We only prove the first part of Lemma A.18, which relates evaluation contexts and
the typing relation. Indeed, the second part is not needed: the paper proof of the
preservation theorem refers to this part to derive a fact, but then does not make any
use of this fact!

The challenge paper only sketches the proof: reason by induction on the structure
of evaluation contexts, and then by case on the last rule used in the typing derivation.
This proof does not go through when the last rule is T Sub. Instead, our proof is by
induction on the typing derivation and case on the evaluation context.

Lemma context replacement :
∀ (e : env) (c : ctx) (t t’ : term) (T : typ),
(∀ (T’ : typ), typing e t T’ → typing e t’ T’) →
typing e (ctx app c t) T → typing e (ctx app c t’) T.

We now prove that immediate reduction preserves the type of terms (Lemma A.19).

Lemma local preservation app :
∀ (E : env) (t12 t2 : term) (T11 U : typ),
typing E (app (abs T11 t12) t2) U → typing E (subst t12 0 t2) U.

Lemma local preservation tapp :
∀ (E : env) (t12 : term) (T11 T2 U : typ),
typing E (tapp (tabs T11 t12) T2) U → typing E (subst typ t12 0 T2) U.
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Finally, we prove Theorem A.20 (Preservation).

Theorem preservation :
∀ (E : env) (t t’ : term) (U : typ),
typing E t U → red t t’ → typing E t’ U.

4.9 An Alternative Reduction Relation

Instead of using contexts, one can use explicit closure rules for the evaluation
relation. This yields slightly simpler proofs of progress and preservation, both by
induction on the typing derivation.

Inductive red’ : term → term → Prop :=
| appabs :

∀ (t11 : typ) (t12 t2 : term),
value t2 → red’ (app (abs t11 t12) t2) (subst t12 0 t2)

| tapptabs :
∀ (t11 t2 : typ) (t12 : term),
red’ (tapp (tabs t11 t12) t2) (subst typ t12 0 t2)

| appfun :
∀ t1 t1’ t2 : term, red’ t1 t1’ → red’ (app t1 t2) (app t1’ t2)

| apparg :
∀ t1 t2 t2’ : term,
value t1 → red’ t2 t2’ → red’ (app t1 t2) (app t1 t2’)

| typefun :
∀ (t1 t1’ : term) (t2 : typ),
red’ t1 t1’ → red’ (tapp t1 t2) (tapp t1’ t2).

5 Challenges 1B and 2B: Adding Records

Challenges 1B and 2B extend the two previous challenges by enriching the language
with records. The structure of our solution remains the same. We present the
required changes to definitions and lemmas.

5.1 Challenge 1B: Transitivity of Subtyping with Records

Challenge 1A is extended by enriching the type language with record types.

T ::= . . . types
{li = Ti} type of records

This does not add significant difficulties to the transitivity proof, as record types do
not contain binders.

A record constructor trecord is added to the definition of types of Section 3.1. This
assumes given a set of labels lab, with decidable equality. A record is a list of pairs of
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a label and a type. We do not use the predefined list datatype, as we would then have
to prove explicitly an induction principle rather than having Coq generate it for us.

Inductive typ : Set :=
. . .
| trecord : trec → typ

with trec : Set :=
| tcons : lab → typ → trec → trec
| tnil : trec.

We then explicitly generate induction principles for these types, as Coq does not do
it by default for mutually defined inductive types.

Scheme typ induction := Induction for typ Sort Prop
with trec induction := Induction for trec Sort Prop.

We define a function trec get : trec → lab → option typ that takes a record R and
a label l and returns the type associated to label l in record R, if any. The function
is declared as a coercion, which means that it is automatically inserted by Coq when
needed during typechecking: concretely, one can then write the expression R l for
the expression trec get R l.

The shifting and substitution functions tshift and tsubst of Section 3.2 are ex-
tended in a straightforward way by recursively traversing patterns. Environments
(Section 3.3) are unchanged.

The type well-formedness condition of Section 3.4 is adjusted as follows: a record
R is well-formed if it contains no repeated label (condition R2 l = None below) and
the types it contains are well-formed.

Fixpoint wf typ (E : env) (T : typ) : Prop :=
match T with
. . .
| trecord R1 ⇒ wf trec E R1
end

with wf trec (E : env) (R : trec) : Prop :=
match R with
| tcons l T1 R2 ⇒ wf typ E T1 ∧ wf trec E R2 ∧ R2 l = None
| tnil ⇒ True
end.

Finally, the subtyping rule for records is added to the rules of Section 3.5.

Inductive sub : env → typ → typ → Prop :=
. . .
| SA Rcd :

∀ (e : env) (R1 R2 : trec),
wf env e → wf trec e R1 → wf trec e R2 →
(∀ (l : lab), R1 l = None → R2 l = None) →
(∀ (l : lab) (T1 T2 : typ),

R1 l = Some T1 → R2 l = Some T2 → sub e T1 T2) →
sub e (trecord R1) (trecord R2).



A Solution to the PoplMark Challenge Based on de Bruijn Indices 353

The statements of the different lemmas are then unchanged. Their proofs are
adjusted to deal with the additional syntactic construction.

5.2 Challenge 2B: Type Safety with Records and Pattern Matching

The preservation and progress results of Challenge 2A are extended to cover records
and pattern matching.

5.2.1 Terms

Terms are enriched with the following constructions.

t ::= . . . term
{li = ti} record
t.l projection
let p = t in t pattern binding

p ::= patterns
x : T variable pattern
{li = pi} record pattern

We thus extend the definition of terms of Section 4.1. We first define patterns. As for
record types, we do not make use of the predefined list datatype.

Inductive pat : Set :=
| pvar : typ → pat
| precord : prec → pat

with prec : Set :=
| pcons : lab → pat → prec → prec
| pnil : prec.

Binder names are implicit: variable names are omitted in constructor pvar. Patterns
may bind an arbitrary number of variables. In order to refer to each binder, patterns
are read in a sequential fashion: the leftmost occurrence of the pvar constructor is
the outermost binder, while the rightmost one is the innermost binder.

Terms are extended with records, projection and pattern binding.

Inductive term : Set :=
. . .
| record : rec → term
| proj : term → lab → term
| tlet : pat → term → term → term

with rec : Set :=
| rcons : lab → term → rec → rec
| rnil : rec.

5.2.2 Substitution and Shifting

The shifting and substitution operators of Section 4.2 now have to deal with records
and patterns. For this, it is convenient to define a function offset that takes as
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arguments a function f, a pattern p and some argument x and applies f to x one
time for each binder occurring in pattern p.

Fixpoint of fset (A : Set) (f : A → A) (p : pat) (x : A) : A :=
match p with
| pvar ⇒ f x
| precord r ⇒ rof fset f r x
end

with rof fset (A : Set) (f : A → A) (r : prec) (x : A) : A :=
match r with
| pcons p1 r2 ⇒ rof fset f r2 (of fset f p1 x)
| pnil ⇒ x
end.

When moving across a pattern, the cut-off argument x of the term shifting operator
shift is increased by one for each binder occurring in the pattern. Other cases are
straightforward.

Fixpoint shift (x : nat) (t : term) : term :=
match t with
. . .
| record t1 ⇒ record (rshift x t1)
| proj t1 l ⇒ proj (shift x t1) l
| tlet p t1 t2 ⇒ tlet p (shift x t1) (shift (of fset (fun y ⇒ 1 + y) p x) t2)
end

with rshift (x : nat) (t : rec) : rec :=
match t with
| rcons l t1 t2 ⇒ rcons l (shift x t1) (rshift x t2)
| rnil ⇒ rnil
end.

For term substitution subst, when moving across a pattern, the variable being
substituted should be incremented and the substituted term should be shifted, once
per binder occurring in the pattern.

Fixpoint subst (t : term) (x : nat) (t’ : term) : term :=
match t with
. . .
| record t1 ⇒ record (rsubst t1 x t’)
| proj t1 l ⇒ proj (subst t1 x t’) l
| tlet p t1 t2 ⇒

tlet p (subst t1 x t’)
(subst t2 (of fset (fun y ⇒ 1 + y) p x) (of fset (shift 0) p t’))

end
with rsubst (t : rec) (x : nat) (t’ : term) : rec :=
match t with
| rcons l t1 t2 ⇒ rcons l (subst t1 x t’) (rsubst t2 x t’)
| rnil ⇒ rnil
end.

Type shifting and substitution operators are straightforward to adapt.
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5.2.3 Well-Formedness Conditions

We extend the well-formedness conditions of Section 4.3. We first define pattern
well-formedness. The well-formedness of some parts of a pattern should be checked
in an environment extended with previous binders in the pattern. This is also the case
for term t2 in a pattern binding term let p = t1 in t2. To implement this, function
wf pat takes as arguments not only the current environment E and a pattern p to
be checked, but also a function f that checks the well-formedness of what is under
the scope of the pattern, in the appropriate extended environment. For a variable
pattern pvar T, we check that type T is well-formed and that everything under the
scope of the pattern is also well-formed in the environment E extended with a term
variable of type T. When checking a field l of a record pattern, we recursively check
its associated pattern p1, and then the remainder of the pattern r2 in the environment
extended with the bindings in pattern p1.

Fixpoint wf pat (E : env) (p : pat) (f : env → Prop) : Prop :=
match p with
| pvar T ⇒ wf typ E T ∧ f (evar E T)
| precord r ⇒ wf prec E r f
end

with wf prec (E : env) (r : prec) (f : env → Prop) : Prop :=
match r with
| pcons l p1 r2 ⇒ r2 l = None ∧ wf pat E p1 (fun E’ ⇒ wf prec E’ r2 f )
| pnil ⇒ f E
end.

Fixpoint wf term (E : env) (t : term) : Prop :=
match t with
. . .
| record t1 ⇒ wf rec E t1
| proj t1 l ⇒ wf term E t1
| tlet p t1 t2 ⇒ wf term E t1 ∧ wf pat E p (fun E’ ⇒ wf term E’ t2)
end

with wf rec (E : env) (t : rec) : Prop :=
match t with
| rcons l t1 t2 ⇒ wf term E t1 ∧ wf rec E t2 ∧ t2 l = None
| rnil ⇒ True
end.

5.2.4 Typing Relation

We define the typing rules for patterns. They corresponds to the P-Var and P-
Rcd rules of the challenge problem, except that we directly extend an environment
instead of building a piece of environment to be later concatenated. The P-Rcd rule
is decomposed in simpler definitions.

Inductive ptyping : env → pat → typ → env → Prop :=
| P Var :

∀ (E : env) (T : typ), ptyping E (pvar T) T (evar E T)
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| P Rcd :
∀ (E E’ : env) (r : prec) (U : trec),
prtyping E r U E’ → ptyping E (precord r) (trecord U) E’

with prtyping : env → prec → trec → env → Prop :=
| P Rcd Cons :

∀ (E1 E2 E3 : env),
∀ (l : lab) (t1 : pat) (t2 : prec) (U1 : typ) (U2 : trec),
ptyping E1 t1 U1 E2 → prtyping E2 t2 U2 E3 → t2 l = None →
prtyping E1 (pcons l t1 t2) (tcons l U1 U2) E3

| P Rcd Nil :
∀ (E : env), prtyping E pnil tnil E.

Three typing rules are added to the rules of Section 4.4. Compared to the paper
definition, the T-Rcd rule is decomposed in simpler definitions.

Inductive typing : env → term → typ → Prop :=
. . .
| T Let :

∀ (E E’ : env) (t1 t2 : term) (p : pat) (T1 T2 : typ),
typing E t1 T1 → ptyping E p T1 E’ → typing E’ t2 T2 →
typing E (tlet p t1 t2) T2

| T Rcd :
∀ (E : env) (t : rec) (T : trec),
rtyping E t T → typing E (record t) (trecord T)

| T Proj :
∀ (E : env) (t1 : term) (l : lab) (T1 : trec) (T2 : typ),
typing E t1 (trecord T1) → T1 l = Some T2 →
typing E (proj t1 l) T2

with rtyping : env → rec → trec → Prop :=
| T Rcd Cons :

∀ (E : env) (l : lab) (t1 : term) (T1 : typ) (t2 : rec) (T2 : trec),
typing E t1 T1 → rtyping E t2 T2 →
t2 l = None → T2 l = None →
rtyping E (rcons l t1 t2) (tcons l T1 T2)

| T Rcd Nil :
∀ (E : env), wf env E → rtyping E rnil tnil.

5.2.5 Semantics

The semantics of Section 4.5 is extended as follows. In the challenge paper, the
pattern matching rules (rules M-Var and M-Rcd) specify an operator match(p,t1)t2,
which matches term t1 against pattern p and performs the corresponding substitu-
tions in t2. This operator is implemented as a function pmatch. An auxiliary function
prmatch that deals specifically with the M-Rcd rule is simultaneously defined. There
is one case per rule in the paper definition plus one case for failure. We maintain
the following invariant: the value t1 lives in the environment outside the pattern p,
while the term t2 lives in the environment containing the pattern bindings. This is
exactly what is needed to perform the substitution in rule M-Var. In order to preserve
this invariant, the matched value t1 is shifted when crossing part of the pattern
(call to the function offset is the body of function prmatch below). Substitution is
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performed from right to left, incrementally moving the term t2 outside the bindings
through substitutions. Another way to understand this is to see that the simultaneous
substitution of terms t0 to tn in a term t can be decomposed into simple substitutions:

[0 �→↑0
0 t0][1 �→↑0

1 t1] . . . [n �→↑0
n tn]t

where ↑0
k is operator ↑0 iterated k times. The pattern matching function is only

partially defined. We use the bind operator opt bind of the option monad to handle
possible failures in a concise way. One could have used an inductive definition here
to avoid option types. However, one then need to use invertion tactics where one
can here take advantage of the computational capabilities of Coq (see discussion in
Section 3.4).

Fixpoint pmatch (p : pat) (t1 t2 : term) : option term :=
match p, t1 with
| pvar , ⇒ Some (subst t2 0 t1)
| precord p1, record r1 ⇒ prmatch p1 r1 t2
| , ⇒ None
end

with prmatch (p : prec) (r1 : rec) (t2 : term) : option term :=
match p with
| pcons l p1 p2 ⇒

opt bind (prmatch p2 (of fset (rshift 0) p1 r1) t2) (fun t2 ⇒
opt bind (r1 l) (fun t1 ⇒
pmatch p1 t1 t2))

| pnil ⇒ Some t2
end.

Record values are records containing only values. Contexts are updated appropri-
ately. There are two additional reduction rules, for pattern matching and for record
projection.

Inductive red : term → term → Prop :=
. . .
| E LetV :

∀ (p : pat) (t1 t2 t: term),
value t1 → pmatch p t1 t2 = Some t → red (tlet p t1 t2) t

| E ProjRcd :
∀ (l :lab) (t1 : rec) (t1’ : term),
rvalue t1 → t1 l = Some t1’ → red (proj (record t1) l) t1’.

5.2.6 Proofs of Progress and Preservation

Several additional lemmas are required. The statement of other lemmas and theo-
rems are unchanged, though their proofs are adjusted.

We start by some properties of typing and subtyping specific to records. Beside
the weakening lemmas in Section 4.6.4 (corresponding to Lemma A.4 in the paper
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proof), we need an additional lemma for moving a term t under the scope of a
pattern p.

Lemma typing weakening ptyping :
∀ (E1 E2 : env) (p : pat) (T U : typ) (t : term),
ptyping E1 p T E2 → wf typ E1 T → typing E1 t U →
typing E2 (of fset (shift 0) p t) U.

There are two inversion lemmas, for records, besides the one of Section 4.6.6. We
did not have to prove Lemma A.12 (Inversion of subtyping) explicitly for challenge
2A, as we could rely on Coq inversion tactics instead. The case for record is less
immediate and we prove the following lemma.

Lemma record subtyping inversion :
∀ (e : env) (S : typ) (P : trec),
sub e S (trecord P) →
(∃ X, S = tvar X) ∨
(∃ Q, S = trecord Q ∧

∀ (l : lab) (T : typ), P l = Some T →
∃ U, Q l = Some U ∧ sub e U T).

We prove the third assertion of Lemma A.13, pertaining to records.

Lemma t record inversion :
∀ (E : env) (t1 : rec) (T : typ) (T1 : trec),
typing E (record t1) T → sub E T (trecord T1) →
∀ (l : lab) (T2 : typ),
T1 l = Some T2 → ∃ t2, t1 l = Some t2 ∧ typing E t2 T2.

In order to prove progress (corresponding to Section 4.7), we show the second
assertion of Lemma A.14 (Canonical Forms).

Lemma record value :
∀ (E : env) (t : term) (T : trec),
value t → typing E t (trecord T) →
∃ t’, t = record t’ ∧ ∀ (l : lab), t’ l = None → T l = None.

We also show that a value of some type T can be successfully matched again any
pattern of type T, that is, rule E-LetV can be applied. This crucial lemma was
overlooked in the paper proof provided in the challenge paper.

Lemma matching def ined :
∀ (E E’ : env) (p : pat) (T1 : typ) (t1 t2 : term),
ptyping E p T1 E’ → value t1 → typing E t1 T1 →
∃ t, pmatch p t1 t2 = Some t.

For the proof of preservation (Section 4.8), we show Lemma A.17 (Matched patterns
preserve typing).

Lemma matched patterns preserve typing :
∀ (E E’ : env) (p : pat) (t1 t2 t : term) (T1 T2 : typ),
ptyping E p T1 E’ → typing E t1 T1 → typing E’ t2 T2 →
pmatch p t1 t2 = Some t → typing E t T2.
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Finally, we prove the cases corresponding to records of Lemma A.19, showing that
immediate reduction preserves typing.

Lemma local preservation proj :
∀ (E : env) (t1 : rec) (t1’ : term) (l : lab) (U : typ),
typing E (proj (record t1) l) U → t1 l = Some t1’ → typing E t1’ U.

Lemma local preservation let :
∀ (E : env) (p : pat) (t1 t2 t : term) (U : typ),
typing E (tlet p t1 t2) U → pmatch p t1 t2 = Some t → typing E t U.

6 Challenge 3 (Testing and Animating with Respect to the Semantics)

We have not addressed challenge 3. A solution would be to explicitly write a function
step that performs one step of the reduction, when possible, and prove this function
equivalent to the reduction relation. This corresponds precisely to task 3 of the
challenge. Note that the relation red of Section 4.5 is not suitable for computation
purposes, as it is defined inductively. Besides, it is not immediate to rephrase it as
a function, as to implement case E Ctx, one has to revert the context application
ctx app c t1. The alternative reduction relation red’ of Section 4.9 is a better starting
point.

Then, one can decide whether t −→ t′ for two given terms t and t′ (task 1) by
evaluating step t and comparing it to Some t′, which is immediate when using de
Bruijn indices as one does not have to deal with alpha-conversion.

Finally, checking whether t −→∗ t′ �−→ for two given terms t and t′ (task 2) can be
performed by first defining a function that iterates function step a bounded number
of times (in Coq, one can only define terminating functions), and then apply it with
larger and larger integers until a normal form is reached.

It may also be convenient to write functions that converts between terms using
named variables and terms using de Bruijn indices, as reading and writing actual
terms directly with de Bruijn indices is harder than using named variables.

7 Conclusion

There appears to be four main approaches for dealing with binders. The nominal
approach [20, 24] deals explicitly with named variables. This approach makes it
possible to write mechanized proofs which are very close to paper proofs. However, it
depends on the development of a large framework. Higher-order abstract syntax [19]
is a technique consisting in using the bindings of the meta-language to encode the
binding structure of the object language. This is a very powerful technique, but is only
supported by some specific proof assistants. We have presented de Bruijn indices [11].
We believe the main advantage of this approach is that this representation technique
is very simple and concrete: we are clearly dealing with terms up to α-equivalence.
Finally, the locally nameless approach [4, 13, 15–17] is a hybrid approach: de Bruijn
indices are used for bound variables and names are used for free variables. With
this technique, one can avoid both the use of a shifting operator and the need of
renaming variables during substitution. On the other hand, one has to deal with two
kind of variables and a substitution for each.
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De Bruijn indices have been used in many formal proofs developments. We
list the most relevant references. Shankar [22] wrote a mechanical proof of the
Church-Rosser theorem using the Boyer-Moore theorem prover. His definition of
substitution is similar to ours, and he proves the same interaction lemmas (see
Fig. 2). Altenkirch [1, 2] proved the strong normalization of System F in LEGO.
He has to deal with both term and type variables and use two different namespaces
as we do. Huet [14] also wrote a mechanical proof of the Church-Rosser theorem
in Coq. He uses the alternative definition of substitution presented in Section 2.4,
with computational reasons in mind. Rasmussen [21] ported this proof to Isabelle,
reverting to the simpler definition of substitution. Barras [6–8] uses the definition
of substitution of Huet for his formalization of the Calculus of Construction in Coq.
This is justified, as one of the goals is to check an efficient implementation of the
calculus.

Regarding the POPLmark challenge, the solution proposed by Berghofer [9] is
the closest to ours. It covers all challenges. It is also based on de Bruijn indices,
but using the alternative substitution presented in Section 2.4. This is the only other
formalization of a calculus with record and pattern matching based on de Bruijn
indices that we know of. Patterns are handled in a way similar to ours, though the
simultaneous substitution is made explicit. A single namespace is used for type and
term variables. As a consequence, there is a single shifting function. On the other
hand, term substitution also changes indices in types.

There are several other solutions in Coq, most notably by Leroy and Charguéraud.
Leroy [15] only addresses part A of the challenges. Charguéraud [12] has experi-
mented both de Bruijn indices and the locally nameless approach. He only addresses
challenge 1A but has put an impressive amount of effort in finding formulations
that makes the proofs as simple as possible. In particular, rule SA-All is normally
formulated with an implicit existential quantification on variable X:

E � T1<:S1 E,X<:T1 � S2<:T2

E � ∀X<:S1.S2<:∀X<:T1.T2
(SA-All)

In the locally nameless approach, he advocates to use a universal quantification
instead, with variable X ranging over all possible names but a finite set L.

E � T1<:S1 ∀X �∈ L, E,X<:T1 � S2<:T2

E � ∀X<:S1.S2<:∀X<:T1.T2

Indeed, this rule provides a stronger elimination form, and can be proved equivalent
to the previous one. His proofs are short but make extensive use of proof-search
tactics.

We believe the simplicity and the relatively low overhead of de Bruijn indices
makes it a worthwhile approach, especially for proof developments where binders
are not omnipresent, and when starting from scratch.
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